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A B S T R A C T   

We investigate single photon double ionization (spDI) of substituted benzenes (toluene, chlorobenzene and 
fluorobenzene) in photon energy of 20–40 eV. We observe that a resonance-like enhancement of spDI, which 
deviates from the prediction of the “knock-out” mechanism, appears at a specific photon energy near the 
threshold for halogenated benzenes, but not for toluene. The enhanced spDI occurs if the de Broglie wavelength 
of the two-electron pseudoparticle matches the size of the conjugated p-π orbital of halogenated benzene. Our 
study shows that the molecular spDI is not a local event and the molecular orbital plays a pivotal role in double 
ionization.   

1. Introduction 

Single photon double ionization (spDI), i.e, simultaneous removal of 
two electrons from an atom or molecule with absorption of one photon 
energy, is a fundamental process to understand the two-electron corre-
lation in atoms and molecules. Atomic spDI has been investigated for a 
long time for different atoms including helium [1–3], lithium [4,5], and 
other alkali and alkaline-earth metal atoms [6–9]. It is found that the 
relative double ionization cross-section, which can be represented by the 
ratio of the yield of doubly charged ions to that of singly charged ions 
(M2+/M+), shows a very similar dependence on the photon energy for 
different kinds of atoms [10]. This fact indicates the common spDI 
mechanism of atoms, termed as a “knock-out” process in which the 
photo-absorbing electron knocks out the second electron on its way out 
[11]. It is now believed that the mechanism of atomic spDI is a “knock- 
out” process at an excess energy (photon energy minus double ionization 
threshold) up to 250 eV [3]. 

Comparing to that of atoms, our knowledge about the spDI of large 
polyatomic molecules is rather limited. It has been shown that one can 
qualitatively understand the mechanism of molecular spDI by measuring 
the energy dependence of the M2+/M+ ratio and comparing to the scaled 
results of He atom [12]. The “knock-out” mechanism as in atomic spDI 
has been demonstrated to have a significant contribution in spDI for 

many polyatomic molecules [12]. As already been identified in atoms, 
the “knock-out” mechanism is also viewed as the ‘‘two-step-one’’ [1] or 
the ‘‘half-collision’’ model [13], which can be explained by an internal 
electron-impact process in which the photon-absorbing electron ionizes 
a second electron by impact [14]. For molecules, the “knock-out” 
mechanism of spDI has been directed observed even for molecules as 
large as 14 Å [15]. Interestingly, apparent enhancement in spDI over the 
“knock-out” contribution has been observed at a particular excess en-
ergy for benzene and aromatic molecules [12,16] as well as C60 mole-
cules [17,18]. Studies on spDI of aromatic molecules have found that the 
resonance occurs at the excess energy (~40 eV above the DI threshold) 
corresponding to the de Broglie wavelength of the two-electron pseu-
doparticle (λ2e) if it matches the C-C bond distance in the benzene ring 
[16]. While the underlying physics is not completely understood and 
requires further investigations, such resonance-like enhancement which 
deviates from the atomic spDI clearly indicates the effect of the molec-
ular structure in double ionization of polyatomic molecules. 

Here, we investigated the spDI of three substituted benzenes 
(toluene, fluorobenzene and chlorobenzene) using synchrotron radia-
tion, especially near their double ionization thresholds. Apparent 
enhancement in double ionization has been observed in the spDI of 
halogenated benzenes at excess energy of 3–4 eV, but is absent in the 
case of toluene. Analysis indicates that the size and structure of the 
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molecular orbitals from which the electrons are removed play a signif-
icant role in spDI of polyatomic molecules. 

2. Experiment 

The experiment was performed at the BL09U beamline of the Na-
tional Synchrotron Radiation Laboratory in Hefei, China [19]. The 
synchrotron radiation emitted from an undulator was dispersed by a 6 m 
grating monochromator equipped with a 740 lines/mm spherical 
grating [20], which covers the energy range of 15–45 eV photons. When 
the entrance and exit slits are fixed at 80 μm, the photon energy reso-
lution (ΔE/E) is about 1.1 × 10-4 (at a photon energy of 25 eV). By 
comparing the photoionization efficiency curve of inert gas (He), the 
photon energy was calibrated with less than ± 5 meV error. A silicon 
photodiode (SXUV-100, International Radiation Detections, Inc) was 
used to measure photon flux and normalize the collected signal. 

A refletron time-of-flight mass spectrometer was used to measure the 
ion yields, which has been described in detail in previous studies 
[21,22]. Briefly, toluene, fluorobenzene (both at room temperature) and 
chlorobenzene (heated in a water bath at 60 ◦C) molecules carried by the 
carrier gas (Ar, the stagnation pressure of 1.2 atm) were introduced into 
the vacuum chamber via a 30 μm-diameter nozzle and a skimmer to 
form a supersonic molecular beam. The molecular beam interacted with 
the synchrotron radiation to generate ions in the ionization chamber, 
which were extracted and finally collected by a refletron time-of-flight 
mass spectrometer with MCP detectors. The MCP detector was oper-
ated with 3000 V bias voltage, which can ensure an approximately 
uniform detection efficiency for all ions independent of their mass-to- 
charge ratio [23]. A counter (Multiscaler P7888, Fast Com Tek, Ger-
many) was used to record relative flying time of every ion. The working 
pressures of the source chamber and the ionization chamber of the 
refletron time-of-flight mass spectrometer were 4 × 10-2 Pa and 2 × 10-5 

Pa, respectively. 

3. Results and discussion 

3.1. Double ionization threshold 

Using time-of-flight (ToF) mass spectroscopy, we have measured 
ionic yields of three substituted-benzene molecules (toluene, fluo-
robenzene and chlorobenzene) ionized by the synchrotron radiation at 
the photon energies from 20 to 40 eV. Doubly-charged parent ion (M2+) 
of each molecule appears as the photon energy is higher than 24 eV. To 
determine the double ionization threshold (IE2), we present in Fig. 1 (a) 

(b) and (c) the ratios of doubly to singly charged parent ions (M2+/M+) 
as a function of photon energy, for toluene, fluorobenzene and chloro-
benzene, respectively. The IE2 value of each substituted-benzene can be 
determined by fitting the measured M2+/M+ results using the empirical 
method according to [12]: 

M2+/M+(hv) = a × (hv − IE2)
n
+ b (1)  

where hv is the photon energy, a is a fit parameter, n is an exponent and b 
is an additional offset. As shown in Fig. 1, our results can be well fitted 
with the above empirical equation, and the IE2 values obtained from the 
fitting are listed in Table 1. We have also performed calculations on the 
IE2 values of the substituted-benzenes, using Density Functional Theory 
(DFT) method at the B3LYP/6-311G (d,p) level. The calculation results 
are in relatively good agreement with the experimental measurement 
(see Table 1). The double ionization thresholds of fluorobenzene and 
toluene have been measured in the literature [24,25], and the deviations 
between our results and those reported previously are 0.23 eV for flu-
orobenzene and only 0.014 eV for toluene. 

In these three substituted benzenes, the IE2 values of halogenated 
benzenes (chlorobenzene and fluorobenzene) are close and are about 1 
eV higher than that of toluene. We also note that the threshold of each 
substituted benzene is lower than that of benzene (IE2 = 26.1 eV) [26]. 
For organic molecules, Eland [27] proposed an empirical rule con-
cerning the relationship of IE2 and single ionization threshold (IE1), i.e., 
IE2 = 2.8(±0.1) × IE1. The ratio of IE2/IE1 of each substituted benzene 
lies at above 2.7, which is in good accordance to Eland’s empirical rule. 

3.2. Enhanced single photon double ionization near the threshold 

It is well known that the mechanism of atomic spDI is a “knock-out” 
[11] process at low excess energy (hv − IE2) (For atom He, spDI is a 
“knock-out” process when the excess energy is below 250 eV [3]). For 
polyatomic molecules, by comparing the M2+/M+ ratio curve (i.e., 
dependence of the ratio on the excess energy) with the scaled M2+/M+

curve of He, one may understand the contribution of “knock-out” 
mechanism to spDI [12]. Fig. 2 shows the M2+/M+ curves of toluene, 
chlorobenzene and fluorobenzene in the excess energy of 0–16 eV. The 
solid lines in the figure represent the scaled ratio of He (i.e., N×(He2+/ 
He+), where N is the scaling factor and He2+/He+ results are obtained 
from ref. [3]). For reference, the original results of He2+/He+ [3] are also 
presented in the figure (dashed line). The scaling factor N of toluene, 
chlorobenzene and fluorobenzene are 2.5, 6.8 and 3.2, respectively. As 
one can see from the figure, the M2+/M+ curve of each molecule 
generally agrees with the scaled result of He. This consistence indicates 
that spDI of the substituted benzenes investigated in the study is also a 
“knock-out” process, which is in accordance with the results of benzene 
[12] and various benzene derivatives [16] as well as heterocyclic mol-
ecules [12,16,31,32]. It should be noted that only the He2+/He+ ratio 
but not the excess energy axis is scaled to achieve the agreement with 
the results of molecules, since the knockout mechanism is dominant at 0.000
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Fig. 1. Measured ratio of M2+/M+ for toluene, chlorobenzene and fluo-
robenzene (open squares) near threshold. The red line indicates the fitting 
result of least squares method. (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this article.) 

Table 1 
Ionization thresholds of the substituted-benzenes (in unit of eV).  

Sample IE2 IE1 IE2/IE1 

This work Ref. 

C7H8 23.82a/23.33b 23.81c 8.83 ± 0.001e  2.70 
C6H5Cl 24.73a/24.86b  9.07 ± 0.02f  2.73 
C6H5F 24.97a/24.69b 25.20d 9.20 ± 0.01g  2.71  

a Experimental results. 
b DFT Calculation results. 
c Roithová [25]. 
d Griffiths [24]. 
e Lu [28]. 
f Baer [29]. 
g Watanabe[30]. 
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low photon energies while the shakeoff process becomes more signifi-
cant at higher energies [15]. 

It is interesting to find that the ratio M2+/M+ of chlorobenzene or 
fluorobenzene deviates from the prediction of the “knock-out” mecha-
nism near the threshold, which is significantly higher than the scaled 
results of He at the excess energy of 3–5 eV. Such enhancement of spDI is 
not observed in the case of toluene, where the ratio M2+/M+ of which 
agrees well with the scaled results of He in the whole range of the photon 
energy in the study. This observation can be seen more clearly if one 
subtracts the knock-out contribution (K = N×(He2+/He+), i.e., the solid 
line in Fig. 2) from the measured ratios. As shown in Fig. 3, a clear hump 
structure appears in the results of chlorobenzene and fluorobenzene 
with the peak centered at the excess energy of 3.7 and 4.4 eV, respec-
tively, while no such structure is observed in the result of toluene. 

The apparent deviation from the “knock-out” mechanism as in atoms 

indicates that the molecular structure effect plays a significant role in 
spDI of polyatomic molecules. While having not been observed near the 
double ionization threshold, similar hump structure to that in Fig. 3 has 
been observed in the literatures at an excess energy around 40 eV for 
spDI of several aromatic molecules including naphthalene, anthracene 
and deuterated benzene [12,16]. To understand this phenomenon, the 
electrons released from a molecule are treated as a two-electron pseu-
doparticle. The de Briglie wavelength of a two-electron pseudo-particle 
can be calculated: 

λ2e =
h

P2e
=

h
̅̅̅̅̅̅̅̅̅
2mE

√ (2)  

where λ2e is the de Broglie wavelength of the two-electron pseudo- 
particle, h is the Planck constant, P2e is the momentum, m is the mass of 
two electrons (m = 2me), E is the energy. It is pointed out that if λ2e 
equals to the C-C bond distance in the benzene ring (~1.4 Å), the de 
Broglie wave will form a standing wave in the π orbital of the molecule, 
leading to a resonance effect that enhances the probability of double 
ionization at a particular excess energy (λ2e = 1.4 Å, the corresponding 
energy is at 38.4 eV which is close to the resonance energy in spDI of 
aromatic molecules). In our study, however, the resonance appears at 
small excess energies of 3.7 and 4.4 eV, corresponding to λ2e of 4.5 and 
4.1 Å for chlorobenzene and fluorobenzene respectively. The corre-
sponding λ2e values are 2–4 times longer than any of the bond lengths of 
the molecules (see Fig. 4 for the geometric structures of the molecules). 
On the other hand, the λ2e values in the present study are surprisingly 
close to the distance between the halogen atom and the carbon atom at 
the para position of the benzene ring (LCCl = ~4.53 Å for chlorobenzene 
and LCF = ~ 4.13 Å for fluorobenzene). This indicates that the 
enhancement in spDI near the threshold is related to the size of the 
molecule, or the size of the conjugated p-π orbital of halogenated ben-
zene as we will discuss below. 

The fact that the enhancement is much less significant in the result of 
toluene than those of halogenated benzenes is another indication about 
the molecular orbital effect in spDI. For spDI, two electrons in a molecule 
are removed from the highest occupied molecular orbital (HOMO). The 
HOMOs of the three substituted benzenes are presented in Fig. 4. For a 
halogenated benzene, the p orbital of the halogenated atom and the π 
orbital of the benzene ring form a delocalized conjugated p-π orbital. 
The HOMO of toluene is hyperconjugation, which is formed by the σ 
orbital of the C atom in methyl group and the π orbital of the benzene 
ring. Comparing to conjugated p-π orbital in halogenated benzenes, the 
hyperconjugated σ-π orbital in toluene is less delocalized. Our results 
indicate that the double ionization process can take place involving two 
atoms which are correlated by a delocalized electronic orbital and can 
be as far apart as > 4 Å if the de Broglie wavelength matches the distance 
between them. This leads to enhanced spDI at the corresponding energy, 
as we have observed in the study. Our study confirms that the double 
ionization process is not a local event, or more precisely, two electrons 
can be emitted as far apart as the size of the delocalized electronic 
orbital of a molecule. 

4. Conclusion 

In summary, we investigated the influence of the molecular structure 
on spDI of substituted benzenes at the photon energy of 20–40 eV using 
synchrotron radiation. The ratio of doubly to singly charged parent ions 
of each substituted benzene is measured as a function of photon energy, 
and is compared with the results of the scaled He atom. While the 
mechanism could be viewed as a “knock-out” process, it is interesting to 
find different behaviors of spDI between halogenated benzenes and 
toluene. A resonance-like enhancement of the double ionization yield, 
which deviates from the prediction of the “knock-out” mechanism, ap-
pears at a specific photon energy near the threshold for halogenated 
benzenes, but is not apparent in the case of toluene. It is indicated that 
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such enhanced spDI occurs if the de Broglie wavelength of the two- 
electron pseudoparticle matches the size of the conjugated p-π orbital 
of halogenated benzene. Our study confirms the significant influence of 
the molecular orbital structure on the double ionization of polyatomic 
molecules. 
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